Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term

نویسندگان

  • Maurizio Grasselli
  • Sergey Zelik
چکیده

The paper is devoted to a modification of the classical Cahn-Hilliard equation proposed by some physicists. This modification is obtained by adding the second time derivative of the order parameter multiplied by an inertial coefficient ε > 0 which is usually small in comparison to the other physical constants. The main feature of this equation is the fact that even a globally bounded nonlinearity is “supercritical” in the case of two and three space dimensions. Thus the standard methods used for studying semilinear hyperbolic equations are not very effective in the present case. Nevertheless, we have recently proven the global existence and dissipativity of strong solutions in the 2D case (with a cubic controlled growth nonlinearity) and for the 3D case with small ε and arbitrary growth rate of the nonlinearity (see [26, 25]). The present contribution studies the long-time behavior of rather weak (energy) solutions of that equation and it is a natural complement of the results of our previous papers [26] and [25]. Namely, we prove here that the attractors for energy and strong solutions coincide for both the cases mentioned above. Thus, the energy solutions are asymptotically smooth. In addition, we show that the non-smooth part of any energy solution decays exponentially in time and deduce that the (smooth) exponential attractor for the strong solutions constructed previously is simultaneously the exponential attractor for the energy solutions as well. It is worth noting that the uniqueness of energy solutions in the 3D case is not known yet, so we have to use the so-called trajectory approach which does not require the uniqueness. Finally, we apply the obtained exponential regularization of the energy solutions for verifying the dissipativity of solutions of the 2D modified Cahn-Hilliard equation in the intermediate phase space of weak solutions (in between energy and strong solutions) without any restriction on ε.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

Well-posedness and long time behavior of a perturbed Cahn-Hilliard system with regular potentials

The aim of this paper is to study the well-posedness and long time behavior, in terms of finite-dimensional attractors, of a perturbed Cahn–Hilliard equation. This equation differs from the usual Cahn–Hilliard by the presence of the term ε(−Δu+ f (u)). In particular, we prove the existence of a robust family of exponential attractors as ε goes to zero.

متن کامل

Approximate inertial manifolds for the pattern formation Cahn-Hilliard equation

An approximate inertial manifold for an évolution équation is a finite dimensional smooth manifold such that the orbits enter, after a transient time, a very thin neighbourhood of the manifold In this paper, we consider the Cahn-Hilliard équation and we present a method which allows to construct several approximate inertial manifolds providing better and better order approximations to the orbit...

متن کامل

Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting

In this article, we are interested in the study of the asymptotic behavior, in terms of finite-dimensional attractors, of a generalization of the Cahn-Hilliard equation with a fidelity term (integrated over Ω\D instead of the entire domain Ω, D ⊂⊂ Ω). Such a model has, in particular, applications in image inpainting. The difficulty here is that we no longer have the conservation of mass, i.e. o...

متن کامل

Robust Exponential Attractors for Singularly Perturbed Phase-field Type Equations

In this article, we construct robust (i.e. lower and upper semicontinuous) exponential attractors for singularly perturbed phase-field type equations. Moreover, we obtain estimates for the symmetric distance between these exponential attractors and that of the limit Cahn-Hilliard equation in terms of the perturbation parameter. We can note that the continuity is obtained without time shifts as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009